La tarjeta madre es el componente más importante de un computador, ya que en él se integran y coordinan todos los demás elementos que permiten su adecuado funcionamiento. De este modo, una tarjeta madre se comporta como aquel dispositivo que opera como la plataforma o circuito principal de una computadora.
De esta manera, una tarjeta madre cuenta con los conectores del procesador, de la memoria RAM, del Bios, asi como también, de las puertas en serie y las puertas en paralelo. En este importante tablero es posible encontrar también los conectores que permiten la expansión de la memoria y los controles que administran el buen funcionar de los denominados accesorios periféricos básicos, tales como la pantalla, el teclado y el disco duro.
La tarjeta madre es también la llamada “Placa Central” del computador, y como ya se mencionaba, en ella podemos encontrar todos los conectores que posibilitan la conexión con otros microprocesadores, los que le permiten la realización de tareas mucho más específicas. De este modo, cuando en un computador comienza un proceso de datos, existen múltiples partes que operan realizando diferentes tareas, cada uno llevando a cabo una parte del proceso. Sin embargo, lo más importante será la conexión que se logra entre el procesador central, también conocido con el nombre de CPU (este se confunde muchas veces con la tarjeta madre, pero la CPU va conectada a esta), y los otros procesadores.
Zocalo
El zócalo (socket en inglés) es un sistema electromecánico de soporte y conexión eléctrica, instalado en la placa base, que se usa para fijar y conectar un microprocesador. Se utiliza en equipos de arquitectura abierta, donde se busca que haya variedad de componentes permitiendo el cambio de la tarjeta o el integrado. En los equipos de arquitectura propietaria, los integrados se sueldan sobre la placa base, como sucede en las videoconsolas.
Existen variantes desde 40 conexiones para integrados pequeños, hasta más de 1300 para microprocesadores, los mecanismos de retención del integrado y de conexión dependen de cada tipo de zócalo, aunque en la actualidad predomina el uso de zócalo ZIF (pines) o LGA (contactos).
Procesador
Existen variantes desde 40 conexiones para integrados pequeños, hasta más de 1300 para microprocesadores, los mecanismos de retención del integrado y de conexión dependen de cada tipo de zócalo, aunque en la actualidad predomina el uso de zócalo ZIF (pines) o LGA (contactos).
Procesador
El procesador es el cerebro del sistema, encargado de procesar toda la información. Es el componente donde es usada la tecnología más reciente. Existen en el mundo sólo cuatro grandes empresas con tecnología para fabricar procesadores competitivos para computadoras: Intel (que domina más de un 70% del mercado), AMD, Vía (que compró la antigua Cyrix) e IBM, que fabrica procesadores para otras empresas, como Transmeta.
El procesador es el componente más complejo y frecuentemente más caro, pero él no puede hacer nada solo. Como todo cerebro, necesita de un cuerpo, que es formado por los otros componentes de la computadora, incluyendo la memoria, el disco duro, la placa de vídeo y de red, monitor, teclado y mouse.
Disipador
Un disipador es un elemento físico, sin partes móviles, destinado a eliminar el exceso de calor de cualquier elemento.
Su funcionamiento se basa en la segunda ley de la termodinámica, transfiriendo el calor de la parte caliente que se desea disipar al aire. Este proceso se propicia aumentando la superficie de contacto con el aire permitiendo una eliminación más rápida del calor excedente.
Ventilador
Se los llaman Cooler.
(cooler, fan, cúler). Ventilador que se utiliza en los gabinetes de computadoras y otros dispositivos electrónicos para refrigerarlos. Por lo general el aire caliente es sacado desde el interior del dispositivo con los coolers.
Los cooler se utilizan especialmente en las fuentes de energía, generalmente en la parte trasera del gabinete de la computadora. Actualmente también se incluyen coolers adicionales para el microprocesador y placas que pueden sobrecalentarse. Incluso a veces son usados en distintas partes del gabinete para una refrigeración general.
Los coolers son uno de los elementos que, en funcionamiento, suelen ser de los más ruidosos en una computadora. Por esta razón, deben mantenerse limpios, aceitados y ser de buena calidad. Los viejos ventiladores podían producir sonidos de hasta 50 decibeles, en cambio, los actuales están en los 20 decibeles.
Por lo general los coolers en las PCs de escritorio están continuamente encendidos, en cambio en las computadoras portátiles suelen prenderse y apagarse automáticamente dependiendo de las necesidades de refrigeración (por una cuestión de ahorro energético).
Actualmente también las computadoras incluyen detección y aviso de funcionamiento de coolers. Antiguamente los coolers podían estropearse y dejar de funcionar sin que el usuario lo note, ocasionando que la computadora aumente su temperatura y produciendo errores de todo tipo.
Los coolers nunca deben ser obstruidos con ningún objeto, pues esto puede causar un sobrecalentamiento en la computadora.
Ranura ISA
Las ranuras ISA (Industry Standard Architecture) hacen su aparición de la mano de IBM en 1980 como ranuras de expansión de 8bits (en la imagen superior), funcionando a 4.77Mhz (que es la velocidad de pos procesadores Intel 8088).
Se trata de un slot de 62 contactos (31 por cada lado) y 8.5cm de longitud. Su verdadera utilización empieza en 1983, conociéndose como XT bus architecture.
En el año 1984 se actualiza al nuevo estándar de 16bits, conociéndose como AT bus architecture.
Se trata de un slot de 62 contactos (31 por cada lado) y 8.5cm de longitud. Su verdadera utilización empieza en 1983, conociéndose como XT bus architecture.
En el año 1984 se actualiza al nuevo estándar de 16bits, conociéndose como AT bus architecture.
En este caso se trata de una ranura (en realidad son dos ranuras unidas) de 14cm de longitud. Básicamente es un ISA al que se le añade un segundo conector de 36 contactos (18 por cada lado). Estas nuevas ranuras ISA trabajan a 16bits y a 8Mhz (la velocidad de los Intel 80286).
Ranura Eisa
En 1988 nace el nuevo estándar EISA (Extended Industry Standard Architecture), patrocinado por el llamado Grupo de los nueve (AST, Compaq, Epson, Hewlett-Packard, NEC Corporation, Olivetti, Tandy, Wyse y Zenith), montadores de ordenadores clónicos, y en parte forzados por el desarrollo por parte de la gran gigante (al menos en aquella época) IBM, que desarrolla en 1987 el slot MCA (Micro Channel Architecture) para sus propias máquinas.
Las diferencias más apreciables con respecto al bus ISA AT son:
- Direcciones de memoria de 32 bits para CPU, DMA, y dispositivos de bus master.
- Protocolo de transmisión síncrona para transferencias de alta velocidad.
- Traducción automática de ciclos de bus entre maestros y esclavos EISA e ISA.
- Soporte de controladores de periféricos maestros inteligentes.
- 33 MB/s de velocidad de transferencia para buses maestros y dispositivos DMA.
- Interrupciones compartidas.
- Configuración automática del sistema y las tarjetas de expansión (el conocido P&P).
Los slot EISA tuvieron una vida bastante breve, ya que pronto fueron sustituidos por los nuevos estándares VESA y PCI.
Las diferencias más apreciables con respecto al bus ISA AT son:
- Direcciones de memoria de 32 bits para CPU, DMA, y dispositivos de bus master.
- Protocolo de transmisión síncrona para transferencias de alta velocidad.
- Traducción automática de ciclos de bus entre maestros y esclavos EISA e ISA.
- Soporte de controladores de periféricos maestros inteligentes.
- 33 MB/s de velocidad de transferencia para buses maestros y dispositivos DMA.
- Interrupciones compartidas.
- Configuración automática del sistema y las tarjetas de expansión (el conocido P&P).
Los slot EISA tuvieron una vida bastante breve, ya que pronto fueron sustituidos por los nuevos estándares VESA y PCI.
Ranura PCI
En el año 1990 se produce uno de los avances mayores en el desarrollo de los ordenadores, con la salida del bus PCI (Peripheral Component Interconnect).
Se trata de un tipo de ranura que llega hasta nuestros días (aunque hay una serie de versiones), con unas especificaciones definidas, un tamaño menor que las ranuras EISA (las ranuras PCI tienen una longitud de 8.5cm, igual que las ISA de 8bits), con unos contactos bastante más finos que éstas, pero con un número superior de contactos (98 (49 x cara) + 22 (11 x cara), lo que da un total de 120 contactos).
Con el bus PCI por primera vez se acuerda también estandarizar el tamaño de las tarjetas de expansión (aunque este tema ha sufrido varios cambios con el tiempo y las necesidades). El tamaño inicial acordado es de un alto de 107mm (incluida la chapita de fijación, o backplate), por un largo de 312mm. En cuanto al backplate, que se coloca al lado contrario que en las tarjetas EISA y anteriores para evitar confusiones, también hay una medida estándar (los ya nombrados 107mm), aunque hay una medida denominada de media altura, pensada para los equipos extraplanos.
Las principales versiones de este bus (y por lo tanto de sus respectivas ranuras) son:
- PCI 1.0: Primera versión del bus PCI. Se trata de un bus de 32bits a 16Mhz.
- PCI 2.0: Primera versión estandarizada y comercial. Bus de 32bits, a 33MHz
- PCI 2.1: Bus de 32bist, a 66Mhz y señal de 3.3 voltios
- PCI 2.2: Bus de 32bits, a 66Mhz, requiriendo 3.3 voltios. Transferencia de hasta 533MB/s
- PCI 2.3: Bus de 32bits, a 66Mhz. Permite el uso de 3.3 voltios y señalizador universal, pero no soporta señal de 5 voltios en las tarjetas.
- PCI 3.0: Es el estándar definitivo, ya sin soporte para 5 voltios.
Se trata de un tipo de ranura que llega hasta nuestros días (aunque hay una serie de versiones), con unas especificaciones definidas, un tamaño menor que las ranuras EISA (las ranuras PCI tienen una longitud de 8.5cm, igual que las ISA de 8bits), con unos contactos bastante más finos que éstas, pero con un número superior de contactos (98 (49 x cara) + 22 (11 x cara), lo que da un total de 120 contactos).
Con el bus PCI por primera vez se acuerda también estandarizar el tamaño de las tarjetas de expansión (aunque este tema ha sufrido varios cambios con el tiempo y las necesidades). El tamaño inicial acordado es de un alto de 107mm (incluida la chapita de fijación, o backplate), por un largo de 312mm. En cuanto al backplate, que se coloca al lado contrario que en las tarjetas EISA y anteriores para evitar confusiones, también hay una medida estándar (los ya nombrados 107mm), aunque hay una medida denominada de media altura, pensada para los equipos extraplanos.
Las principales versiones de este bus (y por lo tanto de sus respectivas ranuras) son:
- PCI 1.0: Primera versión del bus PCI. Se trata de un bus de 32bits a 16Mhz.
- PCI 2.0: Primera versión estandarizada y comercial. Bus de 32bits, a 33MHz
- PCI 2.1: Bus de 32bist, a 66Mhz y señal de 3.3 voltios
- PCI 2.2: Bus de 32bits, a 66Mhz, requiriendo 3.3 voltios. Transferencia de hasta 533MB/s
- PCI 2.3: Bus de 32bits, a 66Mhz. Permite el uso de 3.3 voltios y señalizador universal, pero no soporta señal de 5 voltios en las tarjetas.
- PCI 3.0: Es el estándar definitivo, ya sin soporte para 5 voltios.
El puerto AGP (Accelerated Graphics Port) es desarrollado por Intel en 1996 como puerto gráfico de altas prestaciones, para solucionar el cuello de botella que se creaba en las gráficas PCI. Sus especificaciones parten de las del bus PCI 2.1, tratándose de un bus de 32bits.
Con el tiempo has salido las siguientes versiones:
- AGP 1X: velocidad 66 MHz con una tasa de transferencia de 266 MB/s y funcionando a un voltaje de 3,3V.
- AGP 2X: velocidad 133 MHz con una tasa de transferencia de 532 MB/s y funcionando a un voltaje de 3,3V.
- AGP 4X: velocidad 266 MHz con una tasa de transferencia de 1 GB/s y funcionando a un voltaje de 3,3 o 1,5V para adaptarse a los diseños de las tarjetas gráficas.
- AGP 8X: velocidad 533 MHz con una tasa de transferencia de 2 GB/s y funcionando a un voltaje de 0,7V o 1,5V.
Se utiliza exclusivamente para tarjetas gráficas y por su arquitectura sólo puede haber una ranura AGP en la placa base.
Se trata de una ranura de 8cm de longitud, instalada normalmente en principio de las ranuras PCI (la primera a partir del Northbridge), y según su tipo se pueden deferenciar por la posición de una pestaña de control que llevan.
Con el tiempo has salido las siguientes versiones:
- AGP 1X: velocidad 66 MHz con una tasa de transferencia de 266 MB/s y funcionando a un voltaje de 3,3V.
- AGP 2X: velocidad 133 MHz con una tasa de transferencia de 532 MB/s y funcionando a un voltaje de 3,3V.
- AGP 4X: velocidad 266 MHz con una tasa de transferencia de 1 GB/s y funcionando a un voltaje de 3,3 o 1,5V para adaptarse a los diseños de las tarjetas gráficas.
- AGP 8X: velocidad 533 MHz con una tasa de transferencia de 2 GB/s y funcionando a un voltaje de 0,7V o 1,5V.
Se utiliza exclusivamente para tarjetas gráficas y por su arquitectura sólo puede haber una ranura AGP en la placa base.
Se trata de una ranura de 8cm de longitud, instalada normalmente en principio de las ranuras PCI (la primera a partir del Northbridge), y según su tipo se pueden deferenciar por la posición de una pestaña de control que llevan.
Las primeras (AGP 1X y 2X) llevaban dicha pestaña en la parte más próxima al borde de la placa base (imagen 1), mientras que las actuales (AGP 8X compatibles con 4X) lo llevan en la parte más alejada de dicho borde (imagen 2).
Existen dos tipos más de ranuras: Unas que no llevan esta muesca de control (imagen 3) y otras que llevan las dos muescas de control. En estos casos se trata de ranuras compatibles con AGP 1X, 2X y 4X (las ranuras compatibles con AGP 4X - 8X llevan siempre la pestaña de control).
Es muy importante la posición de esta muesca, ya que determina los voltajes suministrados, impidiendo que se instalen tarjetas que no soportan algunos voltajes y podrían llegar a quemarse.
Con la aparición del puerto PCIe en 2004, y sobre todo desde 2006, el puerto AGP cada vez está siendo más abandonado, siendo ya pocas las gráficas que se fabrican bajo este estándar.
A la limitación de no permitir nada más que una ranura AGP en placa base se suma la de la imposibilidad (por diferencia de velocidades y bus) de usar en este puerto sistemas de memoria gráfica compartida, como es el caso de TurboCaché e HyperMemory.
Es muy importante la posición de esta muesca, ya que determina los voltajes suministrados, impidiendo que se instalen tarjetas que no soportan algunos voltajes y podrían llegar a quemarse.
Con la aparición del puerto PCIe en 2004, y sobre todo desde 2006, el puerto AGP cada vez está siendo más abandonado, siendo ya pocas las gráficas que se fabrican bajo este estándar.
A la limitación de no permitir nada más que una ranura AGP en placa base se suma la de la imposibilidad (por diferencia de velocidades y bus) de usar en este puerto sistemas de memoria gráfica compartida, como es el caso de TurboCaché e HyperMemory.
Adolecía de los mismos problemas de recursos de los dispositivos diseñados para ranura AMR. Actualmente no se incluye en las placas madres.
Bios
El BIOS (sigla en inglés de basic input/output system; en español "sistema básico de entrada y salida") es un software que localiza y reconoce todos los dispositivos necesarios para cargar el sistema operativo en la memoria RAM; es un software muy básico instalado en la placa base que permite que ésta cumpla su cometido. Proporciona la comunicación de bajo nivel, el funcionamiento y configuración del hardware del sistema que, como mínimo, maneja el teclado y proporciona una salida básica (emitiendo pitidos normalizados por el altavoz de la computadora si se producen fallos) durante el arranque. El BIOS usualmente está escrito en lenguaje ensamblador. La mayoría de las versiones de MS-DOS tienen un archivo llamado "IBMBIO.COM" o "IO.SYS" que es análogo al BIOS de CP/M.
El BIOS es un sistema básico de entrada/salida que normalmente pasa inadvertido para el usuario final de computadoras. Se encarga de encontrar el sistema operativo y cargarlo en la memoria RAM. Posee un componente de hardware y otro de software; este último brinda una interfaz generalmente de texto que permite configurar varias opciones del hardware instalado en el PC, como por ejemplo el reloj, o desde qué dispositivos de almacenamiento iniciará el sistema operativo (Microsoft Windows, GNU/Linux, Mac OS X, etc.).
La bios proporciona mensajes de error para que los usuarios puedan solucionarlos también incluye la configuración de aspectos importantes de la máquina.
Chipset Norte
El Northbridge (traducido como: "puente norte" en español) es el circuito integrado más importante del conjunto de chips (Chipset) que constituye el corazón de la placa madre. Recibe el nombre por situarse en la parte superior de las placas madres con formato ATX y por tanto no es un término utilizado antes de la aparición de este formato para ordenadores de sobremesa. También es conocido como MCH (concentrador controlador de memoria) en sistemas Intel y GMCH si incluye el controlador del sistema gráfico.
Es el chip que controla las funciones de acceso desde y hasta microprocesador, AGP o PCI-Express, memoria RAM, vídeo integrado (dependiendo de la placa) y Southbridge. Su función principal es la de controlar el funcionamiento del bus del procesador, la memoria y el puerto AGP o PCI-Express. De esa forma, sirve de conexión (de ahí su denominación de "puente") entre la placa madre y los principales componentes de la PC: microprocesador, memoria RAM y tarjeta de vídeo AGP o PCI Express. Generalmente, las grandes innovaciones tecnológicas, como el soporte de memoria DDR o nuevos FSB, se implementan en este chip. Es decir, el soporte que tenga una placa madre para determinado tipo de microprocesadores, memorias RAM o placas AGP estará limitado por las capacidades del Northbridge de que disponga.
Chipset Sur
El puente sur (en inglés southbridge) es un circuito integrado que se encarga de coordinar los diferentes dispositivos de entrada y salida y algunas otras funcionalidades de baja velocidad dentro de la placa base. El puente sur no está conectado a la unidad central de procesamiento, sino que se comunica con ella indirectamente a través del puente norte.
La funcionalidad encontrada en los puentes sur actuales incluye soporte para:
- Peripheral Component Interconnect
- Bus ISA
- Bus SPI
- System Management Bus
- Controlador para el acceso directo a memoria
- Controlador de Interrupcciones
- Controlador para Integrated Drive Electronics (SATA o PATA)
- Puente LPC
- Reloj en Tiempo Real - Real Time Clock
- Administración de potencia eléctrica APM y ACPI
- BIOS
- Interfaz de sonido AC97 o HD Audio.
En los últimos modelos de placas el Southbridge integra cada vez mayor número de dispositivos a conectar y comunicar por lo que fabricantes como AMD o VIA Technologies han desarrollado tecnologías como HyperTransport o Ultra V-Link respectivamente para evitar el efecto cuello de botella que se producía al usar como puente el bus PCI.
Pila
La pila del ordenador, o más correctamente el acumulador, se encarga de conservar los parámetros de la BIOS cuando el ordenador está apagado. Sin ella, cada vez que encendiéramos tendríamos que introducir las características del disco duro, del chipset, la fecha y la hora...
Se trata de un acumulador, pues se recarga cuando el ordenador está encendido. Sin embargo, con el paso de los años pierde poco a poco esta capacidad (como todas las baterías recargables) y llega un momento en que hay que cambiarla. Esto, que ocurre entre 2 y 6 años después de la compra del ordenador, puede vaticinarse observando si la hora del ordenador "se retrasa" más de lo normal.
Para cambiarla, apunte todos los parámetros de la BIOS para reescribirlos luego, saque la pila (usualmente del tipo de botón grande o bien cilíndrica como la de la imagen), llévela a una tienda de electrónica y pida una exactamente igual. O bien lea el manual de la placa base para ver si tiene unos conectores para enchufar pilas externas; si es así, apunte de qué modelo se trata y cómprelas.
Chip de Video
Una tarjeta gráfica, tarjeta de vídeo, placa de vídeo, tarjeta aceleradora de gráficos o adaptador de pantalla, es una tarjeta de expansión para una computadora u ordenador, encargada de procesar los datos provenientes de la CPU y transformarlos en información comprensible y representable en un dispositivo de salida, como un monitor o televisor. Las tarjetas gráficas más comunes son las disponibles para las computadoras compatibles con la IBM PC, debido a la enorme popularidad de éstas, pero otras arquitecturas también hacen uso de este tipo de dispositivos.
Es habitual que se utilice el mismo término tanto a las habituales tarjetas dedicadas y separadas como a las GPU integradas en la placa base. Algunas tarjetas gráficas han ofrecido funcionalidades añadidas como captura de vídeo, sintonización de TV, decodificación MPEG-2 y MPEG-4o incluso conectores Firewire, de ratón,lápiz óptico o joystick.
Las tarjetas gráficas no son dominio exclusivo de los PC; contaron o cuentan con ellas dispositivos como los Commodore Amiga (conectadas mediante las ranuras Zorro II y Zorro III), Apple II, Apple Macintosh, Spectravideo SVI-328, equipos MSX y, por supuesto, en las videoconsolas modernas, como la Wii, la Playstation 3 y la Xbox360.
El interfaz ATA (Advanced Technology Attachment) o PATA, originalmente conocido como IDE (Integrated device Electronics), es un estándar de interfaz para la conexión de los dispositivos de almacenamiento masivo de datos y las unidades ópticas que utiliza el estándar derivado de ATA y el estándar ATAPI.
En el interfaz ATA se permite conectar dos dispositivos por BUS. Para ello, de los dos dispositivos, uno tiene que estar como esclavo y el otro como maestro para que la controladora sepa a/de qué dispositivo mandar/recibir los datos. El orden de los dispositivos será maestro, esclavo. Es decir, el maestro será el primer dispositivo y el esclavo, el segundo. La configuración se realiza mediante jumpers. Por lo tanto, el dispositivo se puede conectar como:
- Como Maestro ('Master'). Si es el único dispositivo en el cable, debe tener esta configuración, aunque a veces también funciona si está como esclavo. Si hay otro dispositivo, el otro debe estar como esclavo.
- Como Esclavo ('Slave'). Funcionará conjuntamente con el maestro. Debe haber otro dispositivo que sea maestro.
Un disquete o disco flexible (en inglés floppy disk o diskette) es un medio o soporte de almacenamiento de datos formado por una pieza circular de material magnético, fina y flexible (de ahí su denominación) encerrada en una cubierta de plástico cuadrada o rectangular.
Los disquetes se leen y se escriben mediante un dispositivo llamado disquetera (o FDD, del inglés Floppy Disk Drive). En algunos casos es un disco menor que el CD. La disquetera es el dispositivo o unidad lectora/grabadora de disquetes, y ayuda a introducirlo para guardar la información.
Este tipo de dispositivo de almacenamiento es vulnerable a la suciedad y los campos magnéticos externos, por lo que, en muchos casos, deja de funcionar con el tiempo.
Serial ATA o SATA (acrónimo de Serial Advanced Technology Attachment) es una interfaz de transferencia de datos entre la placa base y algunos dispositivos de almacenamiento, como puede ser el disco duro, lectores y regrabadores de CD/DVD/BR, Unidades de Estado Sólido u otros dispositivos de altas prestaciones que están siendo todavía desarrollados. Serial ATA sustituye a la tradicional Parallel ATA o P-ATA. SATA proporciona mayores velocidades, mejor aprovechamiento cuando hay varias unidades, mayor longitud del cable de transmisión de datos y capacidad para conectar unidades al instante, es decir, insertar el dispositivo sin tener que apagar el ordenador o que sufra un cortocircuito como con los viejos Molex.
Actualmente es una interfaz aceptada y estandarizada en las placas base de PC. La Organización Internacional Serial ATA (SATA-IO) es el grupo responsable de desarrollar, de manejar y de conducir la adopción de especificaciones estandarizadas de Serial ATA. Los usuarios de la interfaz SATA se benefician de mejores velocidades, dispositivos de almacenamientos actualizables de manera más simple y configuración más sencilla. El objetivo de SATA-IO es conducir a la industria a la adopción de SATA definiendo, desarrollando y exponiendo las especificaciones estándar para la interfaz SATA.
El estándar ATX (Advanced Technology Extended) se desarrolló como una evolución del factor de forma de Baby-AT, para mejorar la funcionalidad de los actuales E/S y reducir el costo total del sistema. Este fue creado por Intel en 1995. Fue el primer cambio importante en muchos años en el que las especificaciones técnicas fueron publicadas por Intel en 1995 y actualizadas varias veces desde esa época, la versión más reciente es la 2.2 publicada en 2004.
Una placa ATX tiene un tamaño de 305 mm x 244 mm (12" x 9.6"). Esto permite que en algunas cajas ATX quepan también placas Boza microATX.
Otra de las características de las placas ATX son el tipo de conector a la fuente de alimentación, el cual es de 24 (20+4) contactos que permiten una única forma de conexión y evitan errores como con las fuentes AT y otro conector adicional llamado P4, de 4 contactos. También poseen un sistema de desconexión por software.
El factor de forma AT (Advanced Technology) es el formato de placa base empleado por el IBM AT y sus clones en formato sobremesa completo y torre completo. Su tamaño es de 12 pulgadas (305 mm) de ancho x 11-13 pulgadas de profundo. Fue lanzado al mercado en 1984. Este formato fue el primer intento exitoso de estandarización para las formas de placas base; antes de él, cada fabricante producía sus PC de formas diferentes haciendo casi imposible realizar intercambios de partes, actualizaciones de hardware y otras operaciones que hoy son comunes.
Si bien este estándar representó un gran avance sobre las plataformas propietarias que producía cada fabricante, con el tiempo fueron descubiertas varias falencias que hicieron necesario que se reemplazara. Su gran tamaño dificultaba la introducción de nuevas unidades de disco. Además su conector con la fuente de alimentación inducía fácilmente al error siendo numerosos los casos de gente que quemaba la placa al conectar indebidamente los dos juegos de cables (pese a contar con un código de color para situar 4 cables negros en la zona central). El conector de teclado es el mismo DIN 5 del IBM PC original.
En 1985 IBM introdujo Baby-AT, más pequeño y barato que AT. Pronto todos los fabricantes cambiaron a esta variante. Sin embargo las mismas especificaciones de este estándar hacían muy difícil seguir con el proceso de miniaturización, por lo que en 1995, Intel presento el estándar ATX, el cual era compatible con el nuevo procesador Pentium.
En 1997 ATX dejó atrás a AT, pasando a ser el nuevo estándar más popular.
La memoria principal o RAM (Random Access Memory, Memoria de Acceso Aleatorio) es donde el computador guarda los datos que está utilizando en el momento presente. El almacenamiento es considerado temporal por que los datos y programas permanecen en ella mientras que la computadora este encendida o no sea reiniciada.
Se le llama RAM por que es posible acceder a cualquier ubicación de ella aleatoria y rápidamente
Físicamente, están constituidas por un conjunto de chips o módulos de chips normalmente conectados a la tarjeta madre. Los chips de memoria son rectángulos negros que suelen ir soldados en grupos a unas plaquitas con "pines" o contactos.
Synchronous Dynamic Random Access Memory (SDRAM) es una memoria dinámica de acceso aleatorio DRAM que tiene una interfaz síncrona. Tradicionalmente, la memoria dinámica de acceso aleatorio DRAM tiene una interfaz asíncrona, lo que significa que el cambio de estado de la memoria tarda un cierto tiempo, dado por las características de la memoria, desde que cambian sus entradas. En cambio, en las SDRAM el cambio de estado tiene lugar en el momento señalado por una señal de reloj y, por lo tanto, está sincronizada con el bus de sistema del ordenador. El reloj también permite controlar una máquina de estados finitos interna que controla la función de "pipeline" de las instrucciones de entrada. Esto permite que el chip tenga un patrón de operación más complejo que la DRAM asíncrona, que no tiene una interfaz de sincronización.
El método de segmentación significa que el chip puede aceptar una nueva instrucción antes de que haya terminado de procesar la anterior. En una escritura de datos, el comando "escribir" puede ser seguido inmediatamente por otra instrucción, sin esperar a que los datos se escriban en la matriz de memoria. En una lectura, los datos solicitados aparecen después de un número fijo de pulsos de reloj tras la instrucción de lectura, durante los cuales se pueden enviar otras instrucciones adicionales. (Este retraso se llama latencia y es un parámetro importante a considerar cuando se compra una memoria SDRAM para un ordenador.)
Las SDRAM son ampliamente utilizadas en los ordenadores, desde la original SDRAM y las posteriores DDR (o DDR1), DDR2 y DDR3. Actualmente se está diseñando la DDR4 y se prevé que estará disponible en 2012.
DDR (Double Data Rate) significa doble tasa de transferencia de datos en español. Son módulos de memoria RAM compuestos por memorias sincrónicas (SDRAM), disponibles en encapsulado DIMM, que permite la transferencia de datos por dos canales distintos simultáneamente en un mismo ciclo de reloj. Los módulos DDR soportan una capacidad máxima de 1 GiB (1 073 741 824 bytes).
Fueron primero adoptadas en sistemas equipados con procesadores AMD Athlon. Intel con su Pentium 4 en un principio utilizó únicamente memorias RAMBUS, más costosas. Ante el avance en ventas y buen rendimiento de los sistemas AMD basados en DDR SDRAM, Intel se vio obligado a cambiar su estrategia y utilizar memoria DDR, lo que le permitió competir en precio. Son compatibles con los procesadores de Intel Pentium 4 que disponen de un Front Side Bus (FSB) de 64 bits de datos y frecuencias de reloj internas que van desde los 200 a los 400 MHz.
DDR2
DDR2 es un tipo de memoria RAM. Forma parte de la familia SDRAM de tecnologías de memoria de acceso aleatorio, que es una de las muchas implementaciones de la DRAM.
Los módulos DDR2 son capaces de trabajar con 4 bits por ciclo, es decir 2 de ida y 2 de vuelta en un mismo ciclo mejorando sustancialmente el ancho de banda potencial bajo la misma frecuencia de una DDR SDRAM tradicional (si una DDR a 200 MHz reales entregaba 400 MHz nominales, la DDR2 por esos mismos 200 MHz reales entrega 800 MHz nominales). Este sistema funciona debido a que dentro de las memorias hay un pequeño buffer que es el que guarda la información para luego transmitirla fuera del módulo de memoria, este buffer en el caso de la DDR convencional trabajaba tomando los 2 bits para transmitirlos en 1 sólo ciclo, lo que aumenta la frecuencia final. En las DDR2, el buffer almacena 4 bits para luego enviarlos, lo que a su vez redobla la frecuencia nominal sin necesidad de aumentar la frecuencia real de los módulos de memoria.
Las memorias DDR2 tienen mayores latencias que las conseguidas con las DDR convencionales, cosa que perjudicaba su rendimiento. Reducir la latencia en las DDR2 no es fácil. El mismo hecho de que el buffer de la memoria DDR2 pueda almacenar 4 bits para luego enviarlos es el causante de la mayor latencia, debido a que se necesita mayor tiempo de "escucha" por parte del buffer y mayor tiempo de trabajo por parte de los módulos de memoria, para recopilar esos 4 bits antes de poder enviar la información.
DDR3
DDR3 es un tipo de memoria RAM. Forma parte de la familia SDRAM de tecnologías de memoria de acceso aleatorio, que es una de las muchas implementaciones de la SDRAM.
El principal beneficio de instalar DDR3 es la habilidad de hacer transferencias de datos más rápido, lo que permite obtener velocidades de transferencia y velocidades de bus más altas que las versiones DDR2 anteriores. Sin embargo, no hay una reducción en la latencia, la cual es proporcionalmente más alta. Además la DDR3 permite usar integrados de 512 MB a 8 GB, siendo posible fabricar módulos de hasta 16 GiB. También proporciona significativas mejoras en el rendimiento en niveles de bajo voltaje, lo que lleva consigo una disminución del gasto global de consumo.
Se prevé que la tecnología DDR3 puede ser dos veces más rápida que la DDR2 y el alto ancho de banda que promete ofrecer DDR3 es la mejor opción para la combinación de un sistema con procesadores dual-core, quad-core y hexaCore (2, 4 y 6 núcleos por microprocesador). Las tensiones más bajas del DDR3 (1,5 V frente 1,8 V de DDR2) ofrecen una solución térmica y energética más eficaces.
SIMM (siglas de Single In-line Memory Module), es un formato para módulos de memoria RAM que consisten en placas de circuito impreso sobre las que se montan los integrados de memoria DRAM. Estos módulos se inserta en zócalos sobre la placa base. Los contactos en ambas caras están interconectados, esta es la mayor diferencia respecto de sus sucesores los DIMMs. Fueron muy populares desde principios de los 80 hasta finales de los 90, el formato fue estandarizado por JEDEC bajo el número JESD-21C.
DIMM
DIMM son las siglas de «Dual In-line Memory Module» y que podemos traducir como Módulo de Memoria en línea doble. Son módulos de memoria RAM utilizados en ordenadores personales. Se trata de un pequeño circuito impreso que contiene chips de memoria y se conecta directamente en ranuras de la placa base. Los módulos DIMM son reconocibles externamente por poseer sus contactos (o pines) separados en ambos lados, a diferencia de los SIMM que poseen los contactos de modo que los de un lado están unidos con los del otro.
Las memorias DIMM comenzaron a reemplazar a las SIMM como el tipo predominante de memoria cuando los microprocesadores Intel Pentium dominaron el mercado.
Un DIMM puede comunicarse con el PC a 64 bits (y algunos a 72 bits) en vez de los 32 bits de los SIMM.
Funciona a una frecuencia de 133 MHz cada una.
El hecho de que los módulos en formato DIMM (Módulo de Memoria en Línea Doble),sean memorias de 64 bits, explica por qué no necesitan emparejamiento. Los módulos DIMM poseen chips de memoria en ambos lados de la placa de circuito impresa, y poseen a la vez, 84 contactos de cada lado, lo cual suma un total de 168 contactos. Además de ser de mayores dimensiones que los módulos SIMM (130x25mm), estos módulos poseen una segunda muesca que evita confusiones.
Cabe observar que los conectores DIMM han sido mejorados para facilitar su inserción, gracias a las palancas ubicadas a ambos lados de cada conector.
También existen módulos más pequeños, conocidos como SO DIMM (DIMM de contorno pequeño), diseñados para ordenadores portátiles. Los módulos SO DIMM sólo cuentan con 144 contactos en el caso de las memorias de 64 bits, y con 77 contactos en el caso de las memorias de 32 bits.
RIMM
RIMM, acrónimo de Rambus Inline Memory Module(Módulo de Memoria en Línea Rambus), designa a los módulos de memoria RAM que utilizan una tecnología denominada RDRAM, desarrollada por Rambus Inc. a mediados de los años 1990 con el fin de introducir un módulo de memoria con niveles de rendimiento muy superiores a los módulos de memoria SDRAM de 100 MHz y 133 MHz disponibles en aquellos años.
Los módulos RIMM RDRAM cuentan con 184 pines y debido a sus altas frecuencias de trabajo requieren de difusores de calor consistentes en una placa metálica que recubre los chips del módulo. Se basan en un bus de datos de 16 bits y están disponibles en velocidades de 300MHz (PC-600), 356 Mhz (PC-700), 400 MHz (PC-800) y 533 Mhz (PC-1066) que por su pobre bus de 16 bits tenía un rendimiento 4 veces menor que la DDR. La RIMM de 533MHz tiene un rendimiento similar al de un módulo DDR133, a pesar de que sus latencias son 10 veces peores que la DDR.
Inicialmente los módulos RIMM fueron introducidos para su uso en servidores basados en Intel Pentium 4. Rambus no manufactura módulos RIMM si no que tiene un sistema de licencias para que estos sean manufacturados por terceros siendo Samsung el principal fabricante de éstos.
A pesar de tener la tecnología RDRAM niveles de rendimiento muy superiores a la tecnología SDRAM y las primeras generaciones de DDR RAM, debido al alto costo de esta tecnología no han tenido gran aceptación en el mercado de PC. Su momento álgido tuvo lugar durante el periodo de introducción del Pentium 4 para el cual se diseñaron las primeras placas base, pero Intel ante la necesidad de lanzar equipos más económicos decidió lanzar placas base con soporte para SDRAM y más adelante para DDR RAM desplazando esta última tecnología a los módulos RIMM del mercado.
Las memorias SO-DIMM (Small Outline DIMM) consisten en una versión compacta de los módulos DIMM convencionales. Debido a su tamaño tan compacto, estos módulos de memoria suelen emplearse en computadores portátiles, PDAs y notebooks, aunque han comenzado a sustituir a los SIMM/DIMM en impresoras de gama alta y tamaño reducido y en equipos con placa base miniatura Mini-ITX).
Los módulos SO-DIMM tienen 100, 144 ó 200 pines. Los de 100 pines soportan transferencias de datos de 32 bits, mientras que los de 144 y 200 lo hacen a 64 bits. Estas últimas se comparan con los DIMM de 168 pines (que también realizan transferencias de 64 bits). A simple vista se diferencian porque las de 100 tienen 2 hendiduras guía, las de 144 una sola hendidura casi en el centro y las de 200 una hendidura parecida a la de 144 pero más desplazada hacia un extremo.
Los SO-DIMM tienen más o menos las mismas características en voltaje y potencia que las DIMM corrientes, utilizando además los mismos avances en la tecnología de memorias (por ejemplo existen DIMM y SO-DIMM con memoria PC2-5300 (DDR2.533/667) con capacidades de hasta 2 GB y Latencia CAS (de 2.0, 2.5 y 3.0).
Asimismo se han desarrollado ordenadores en una sola placa SO-DIMM como el Toradex Colibri (basado en CPU Intel XScale y Windows CE 5.0).
En informática, las carcasas, torres, gabinetes, cajas o chasis de computadora u ordenador, son el armazón del equipo que contiene los componentes del ordenador, normalmente construidos de acero, plástico o aluminio. También podemos encontrarlas de otros materiales como madera o polimetilmetacrilato para cajas de diseño. A menudo de metal electrogalvanizado. Su función es la de proteger los componentes del computador.
Normalmente una carcasa contiene cajas para las fuentes de alimentación y bahías de unidades. En el panel trasero se puede localizar conectores para los periféricos procedentes de la placa base y de las tarjetas de expansión. En el panel frontal encontramos, en muchos casos, botones de encendido y reinicio y LED que indican el estado de encendido de la máquina, el uso del disco duro y la actividad de red.
En algunas carcasas antiguas podíamos ver botones de turbo que limitaban el uso de la CPU y que fueron desapareciendo con el tiempo. En las nuevas podemos ver paneles en el que podemos conectar dispositivos más modernos como USB, Firewire, auriculares y micrófonos. También podemos ver pantallas LCD que indican la velocidad del microprocesador, la temperatura, la hora del sistema, etcétera. Todos estos dispositivos han de conectarse a la placa base para obtener la información.
La fuente de poder, fuente de alimentación o fuente de energía es el dispositivo que provee la electricidad con que se alimenta una computadora u ordenador. Por lo general, en las computadoras de escritorio (PC), la fuente de poder se ubica en la parte de atrás del gabinete, junto a un ventilador que evita su recalentamiento.
Es importante cuidar la limpieza de la fuente de poder; de lo contrario, puede acumular polvo que obstruya la salida de aire. Al aumentar la temperatura, la fuente puede recalentarse y quemarse, dejando de funcionar. Una falla en la fuente de poder incluso puede perjudicar a otros componentes de la computadora, como la placa madre o la placa de video
Hoy en día las computadoras han avanzado bastante desde que se invento la primera, y con ellas han avanzado los dispositivos de almacenamiento. Debido al avance tecnológico se crearon puertos que sirven para recibir y enviar datos de la computadora a periféricos que estén conectados a ella, estos se llaman puertos de comunicación y actualmente se conoce una gran gama de ellos.
En el siguiente trabajo se estudiaran los siguientes dispositivos: puertos PS/2, RCA, PARALELO, SERIAL, USB, VGA y otros.
Un puerto paralelo es una interfaz entre una computadora y un periférico, cuya principal característica es que los bits de datos viajan juntos, enviando un paquete de byte a la vez. Es decir, se implementa un cable o una vía física para cada bit de datos formando un bus. Mediante el puerto paralelo podemos controlar también periféricos como focos, motores entre otros dispositivos, adecuados para automatización.
El cable paralelo es el conector físico entre el puerto paralelo y el dispositivo periférico. En un puerto paralelo habrá una serie de bits de control en vías aparte que irán en ambos sentidos por caminos distintos.
En contraposición al puerto paralelo está el puerto serie, que envía los datos bit a bit por el mismo hilo.
Puerto USB
El diseño del USB tenía en mente eliminar la necesidad de adquirir tarjetas separadas para poner en los puertos bus ISA o PCI, y mejorar las capacidades plug-and-play permitiendo a esos dispositivos ser conectados o desconectados al sistema sin necesidad de reiniciar. Sin embargo, en aplicaciones donde se necesita ancho de banda para grandes transferencias de datos, o si se necesita una latencia baja, los buses PCI o PCIe salen ganando. Igualmente sucede si la aplicación requiere de robustez industrial. A favor del bus USB, cabe decir que cuando se conecta un nuevo dispositivo, el servidor lo enumera y agrega el software necesario para que pueda funcionar (esto dependerá ciertamente del sistema operativo que se esté usando).
El USB puede conectar varios tipos de dispositivos como pueden ser: mouse, teclados, escáneres, cámaras digitales, teléfonos móviles, reproductores multimedia, impresoras, discos duros externos entre otros ejemplos, tarjetas de sonido, sistemas de adquisición de datos y componentes de red. Para dispositivos multimedia como escáneres y cámaras digitales, el USB se ha convertido en el método estándar de conexión. Para impresoras, el USB ha crecido tanto en popularidad que ha desplazado a un segundo plano a los puertos paralelos porque el USB hace mucho más sencillo el poder agregar más de una impresora.
Algunos dispositivos requieren una potencia mínima, así que se pueden conectar varios sin necesitar fuentes de alimentación extra. La gran mayoría de los concentradores incluyen fuentes de alimentación que brindan energía a los dispositivos conectados a ellos, pero algunos dispositivos consumen tanta energía que necesitan su propia fuente de alimentación. Los concentradores con fuente de alimentación pueden proporcionarle corriente eléctrica a otros dispositivos sin quitarle corriente al resto de la conexión (dentro de ciertos límites).
En el caso de los discos duros, es poco probable que el USB reemplace completamente a los buses (el ATA (IDE) y el SCSI), pues el USB tiene un rendimiento más lento que esos otros estándares. Sin embargo, el USB tiene una importante ventaja en su habilidad de poder instalar y desinstalar dispositivos sin tener que abrir el sistema, lo cual es útil para dispositivos de almacenamiento externo. Hoy en día, una gran parte de los fabricantes ofrece dispositivos USB portátiles que ofrecen un rendimiento casi indistinguible en comparación con los ATA (IDE). Por el contrario, el nuevo estándar Serial ATA permite tasas de transferencia de hasta aproximadamente 150/300 MB por segundo, y existe también la posibilidad de extracción en caliente e incluso una especificación para discos externos llamada eSATA.
El USB casi ha reemplazado completamente a los teclados y mouses (ratones) PS/2, hasta el punto que un amplio número de placas base modernas carecen de dicho puerto o solamente cuentan con uno válido para los dos periféricos.
El término Video Graphics Adapter (VGA) se utiliza tanto para denominar al sistema gráfico de pantallas para PC (conector VGA de 15 clavijas D subminiatura que se comercializó por primera vez en 1988 por IBM); como a la resolución 640 × 480. Si bien esta resolución ha sido reemplazada en el mercado de las computadoras, se está convirtiendo otra vez popular por los dispositivos móviles. VGA fue el último estándar de gráficos introducido por IBM al que la mayoría de los fabricantes de clones de PC se ajustaba, haciéndolo hoy (a partir de 2007) el mínimo que todo el hardware gráfico soporta antes de cargar un dispositivo específico. Por ejemplo, la pantalla de Microsoft Windows aparece mientras la máquina sigue funcionando en modo VGA, razón por la que esta pantalla aparecerá siempre con reducción de la resolución y profundidad de color. VGA fue oficialmente reemplazado por XGA estándar de IBM pero en realidad ha sido reemplazada por numerosas extensiones clon ligeramente distintas a VGA realizados por los fabricantes que llegaron a ser conocidas en conjunto como "Super VGA".
El conector PS/2 o puerto PS/2 toma su nombre de la serie de ordenadores IBM Personal System/2 que es creada por IBM en 1987, y empleada para conectar teclados y ratones. Muchos de los adelantos presentados fueron inmediatamente adoptados por el mercado del PC, siendo este conector uno de los primeros.
La comunicación en ambos casos es serial (bidireccional en el caso del teclado), y controlada por microcontroladores situados en la placa madre. No han sido diseñados para ser intercambiados en caliente, y el hecho de que al hacerlo no suela ocurrir nada es más debido a que los microcontroladores modernos son mucho más resistentes a cortocircuitos en sus líneas de entrada/salida.
La comunicación en ambos casos es serial (bidireccional en el caso del teclado), y controlada por microcontroladores situados en la placa madre. No han sido diseñados para ser intercambiados en caliente, y el hecho de que al hacerlo no suela ocurrir nada es más debido a que los microcontroladores modernos son mucho más resistentes a cortocircuitos en sus líneas de entrada/salida.
Aunque idéntico eléctricamente al conector de teclado AT DIN 5 (con un sencillo adaptador puede usarse uno en otro), por su pequeño tamaño permite que en donde antes sólo entraba el conector de teclado lo hagan ahora el de teclado y ratón, liberando además el puerto RS-232 usado entonces mayoritariamente para los ratones, y que presentaba el inconveniente de compartir interrupciones con otro puerto serial (lo que imposibilitaba el conectar un ratón al COM1 y un módem al COM3, pues cada vez que se movía el ratón cortaba al módem la llamada)
A su vez, las interfaces de teclado y ratón PS/2, aunque eléctricamente similares, se diferencian en que en la interfaz de teclado se requiere en ambos lados un colector abierto para permitir la comunicación bidireccional. Los ordenadores normales de sobremesa no son capaces de identificar al teclado y ratón si se intercambian las posiciones.
En cambio en un ordenador portátil o un equipo de tamaño reducido es muy frecuente ver un sólo conector PS/2 que agrupa en los conectores sobrantes ambas conexiones (ver diagrama) y que mediante un cable especial las divide en los conectores normales.
Por su parte el ratón PS/2 es muy diferente eléctricamente del serie, pero puede usarse mediante adaptadores en un puerto serie.
Los ordenadores han venido evolucionando con el pasar del tiempo y cada vez que los analizamos con detenimiento nos damos cuenta de que existen más alternativas de comunicación e interacción de un equipo para con el usuario.
Así como los puertos USB se han mantenido presentes en los ordenadores, los puertos firewire no han corrido con igual suerte, esto analizando la trayectoria de uno y otro puerto.
En sus inicios, los puertos USB se los implementaban en el ordenador por medio de una tarjeta PCI pero con el pasar del tiempo este tipo de puertos se vieron integrados como parte de la placa madre, algo que en muy escasos se ha visto en algunos modelos de placa madre con los puertos de firewire, pues este tipo de tecnología ha sido reemplazada y casi olvidada debido a la próxima presencia de la tecnología USB 3.0.
Puerto Internet
Aunque tu ordenador solo tiene una dirección IP en el amplio mundo que es Internet, una gran variedad de funciones y software están implicadas en una conexión de Internet. Por ejemplo, recibir y enviar correos electrónicos, ver una página Web, transferir archivos, son diferentes procesos, en el cual cada uno utilizará un software diferente. Para gestionar estas funciones de una manera sistemática, se hace uso de los llamados puertos IP como si fueran direcciones locales. Estos puertos no existen físicamente y no deben ser confundidos con los puertos USB o paralelos. Estas direcciones locales son usadas para dirigir los distintos tipos de actividad existente en Internet, al software apropiado en el ordenador local.
Piensa en tu ordenador como una oficina de un edificio, con varias salas y habitaciones para desempeñar diferentes funciones. La dirección IP que utilizamos para navegar por Internet correspondería con el nombre de la calle del edificio, y los puertos IP serían los números de las habitaciones. De hecho, en el formato estándar de una URL, se reserva una sección para el puerto designado. El número de puerto casi nunca es necesario en nuestro navegador de Internet ya que por defecto se utiliza el puerto 80 del protocolo http.
En muchas áreas ha sustituido al conector típico de audio (jack), muy usado desde que los reproductores de casete se hicieron populares, en los años 1970. Ahora se encuentra en la mayoría de televisores y en otros equipos, como grabadores de vídeo o DVD.
El conector macho tiene un polo en el centro (+), rodeado de un pequeño anillo metálico (-) (a veces con ranuras), que sobresale. El conector hembra tiene como polo central un agujero cubierto por otro aro de metal, más pequeño que el del macho para que éste se sujete sin problemas.
Puertos de comunicaciones
Puertos ps/2
Puerto USB
Puerto paralelo
Puerto RJ-11
Puerto RJ-45
Puerto VGA
Puerto RCA
No hay comentarios:
Publicar un comentario